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Explicit symplectic integrator for s-dependent static magnetic field
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This paper reports our recent work on explicit symplectic integration techniques for the charged particle
motion in ans-dependent static magnetic field. Using the extended phase space, symplectic integrators can be
developed for Hamiltonians with or without the paraxial approximation using either the space or time as an
independent variable. This work extends the successful element-by-element tracking method for studying
single-particle nonlinear dynamics to a set ofs-dependent magnetic elements. Important applications of this
work include the studies of the charged particle dynamics in a storage ring with various insertion devices,
superconducting magnets, large aperture magnets with significant fringe fields, and solenoid magnets in the
interaction region. Consequently, this work is expected to make an impact on design and optimal operation of
existing and future light source rings and high energy physics accelerators.
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I. INTRODUCTION

Symplectic integrators are a set of special numerical in
gration methods developed for Hamiltonian systems. Un
more widely used Runge-Kutta algorithms which are no
symplectic in general, symplectic integration methods all
numerical computations of the phase space vector at
time t, $qW (t),pW (t)%, so that the transformation from th
initial state $qW (0),pW (0)% to the final state$qW (t),pW (t)% is
canonical. The early application of higher-order~order>2)
explicit symplectic integrators in accelerator physics was
tiated by Ruth’s work for the following Hamiltonian@1#:

H5T~pW !1V~qW !. ~1!

Applying the Lie map techniques, Neri@2# and Forest@3#
rederived Ruth’s integrator, and found that such integra
were universally applicable to any Lie group. Later, Yosh
developed a systematic method@4# to construct higher-orde
integrators from a lower-order one. This work reduced
search for high-order symplectic integrators to that for
second-order integrator. The further development by Fo
and others extended Yoshida’s technique to the implicit in
gration and multimap explicit integration@5# as well as for
the time-dependent Hamiltonians in the extended ph
space@6#.

In the storage ring, symplectic integration provides an
sential tool to study the long-term beam dynamics. Magn
multipole elements, such as quadrupoles and sextupoles
modeled using a so-called impulse boundary approximat
in which the magnetic field is assumed to be constants
independent! within the effective boundary of the magn
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and zero outside. Such a field model allows one to us
special vector potential with onlys component, AW

5As(x,y) ŝ for the magnet. Consequently, the Hamiltoni
can be reduced to a drift-kick combination of the Ruth typ
H5T(pW )1V(qW ), whereT(pW ) represents a drift andV(qW ) a
kick. Explicit symplectic integrators for such Hamiltonian
have been implemented since the late 1980s in a numbe
tracking codes. These tracking codes have been widely u
to compute charged particle trajectories for a large numbe
turns without introducing artificial damping or antidampin
These tools have been successfully utilized in develop
third generation light storage rings with a small emittance
well as high energy physics collider rings with a high lum
nosity.

However, these types of symplectic integrators fail
model general nonmultipole elements withs-dependent mag-
netic fields such as wiggler and undulator magnets with
ternating field polarity since their Hamiltonians can n
longer be split into drift and kick combinations. Instead, t
Hamiltonian fors-dependent static magnetic fields takes t
following form:

H5T„pW 2aW ~qW ,s!…1V~qW ,s!. ~2!

Symplectic element-by-element tracking for this type
Hamiltonian is made possible using an integration meth
presented in this paper.

It is worth mentioning the recent work to study magne
fringe field effects in the large hadron collider~LHC! and
small rings with large apertures by Berz and co-work
@7,8#. They studied single-particle dynamics by iterating
high-order one-turn Taylor map extracted using a differen
algebraic technique. In spite of its efficiency, semianaly
techniques based on the map iteration may be limited in t
use without being benchmarked by element-by-elem
©2003 The American Physical Society02-1
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tracking. In fact, Abellet al. @9# showed that there existed a
optimal order of one-turn map which would most accurat
reproduce the LHC dynamics as compared with direct tra
ing. This finding clearly demonstrates the need for sympl
tic tracking models for three-dimensional~3D! magnetic
field elements.

In this paper, the mathematical problem is first stated
Sec. II, followed by a brief revisit of Yoshida’s procedure
construct higher-order symplectic integrators~Sec. III!. Sec-
tion IV lays out our development of explicit integrators f
3D static magnetic fields with the paraxial approximation.
Sec. V, the integration technique is extended to the ex
Hamiltonian. This integration method has been used to
velop a general symplectic tracking program for wiggle
Using the wiggler integrator, the dynamics impact of OK
~optical-klystron! free electron laser~FEL! wigglers has been
studied for the Duke storage ring~Sec. VI!.

II. THE PROBLEM

The goal of this paper is to find explicit symplectic int
grators for the charged particle Hamiltonian wi
s-dependent static magnetic field. Such a field depending
all three coordinates can be described in the Cartesian c
dinate system by a vector potential of the formAW (rW)
5Ax(rW) x̂1Ay(rW) ŷ1Az(rW) ẑ, and rW5(x,y,z). The corre-
sponding Hamiltonian is

H~x,px ,y,py ,d,l ;z!52A~11d!22~px2ax!
22~py2ay!2

2az , ~3!

wherepx,y5Px,y /P0 is the scaled transverse momenta,P0 is
the nominal mechanical momentum,d5uPW 2(q/c)AW u/P0
21 is the relative momentum deviation,l is the path length,
andax,y,z(x,y,z)5qAx,y,z(x,y,z)/(P0c) is the scaled vecto
potential.

As a special case, symplectic integrators for the magn
multipole Hamiltonian with the square root had been dev
oped by choosingax5ay50 @6#. Tracking codes implement
ing this type of integrators includeTEAPOT @10# andPTC @11#.

However, in general, such a Hamiltonian contains ter
which mix the coordinate and momentum of the same
nonical pairs, such as in@px,y2ax,y(x,y,z)#2. Therefore,
symplectic integrators developed for Hamiltonians of t
Ruth type are no longer applicable. This problem is parti
larly difficult for the above form of the exact Hamiltonian i
which the mixed terms are grouped together in the squ
root.

In large rings, the paraxial approximation can be made
the charged particle motion, which reduces the Hamilton
to the following form:

H~x,px ,y,py ,d,l ;z!'2d1
~px2ax!

2

2~11d!
1

~py2ay!2

2~11d!
2az .

~4!

While the mixing of the coordinate and momentum rema
in this Hamiltonian, the mixed terms are now all quadratic
04650
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form. Each quadratic term in the Hamiltonian has been fou
to be exactly integrable. This leads to an explicit symplec
integration scheme fors-dependent magnetic field~see Sec.
IV !.

III. YOSHIDA’S PROCEDURE REVISITED

Let us consider a time-independent HamiltonianH(qW ,pW ),
its Lie map from a time 0 to a timet can be symbolically
written as

M~ t !5exp~ t:2H: !. ~5!

Suppose that this unsolvable Hamiltonian can be split intoN
solvable parts,H5H11H21•••1HN , then a second-orde
integrator can be constructed using a symmetrized Lie m
product@5#:

Ni~ t !5exp~ t:2Hi : !, i 51, . . . ,N

M25N1~ t/2!N2~ t/2!•••NN~ t !•••N2~ t/2!N1~ t/2!

5M~ t !1O~ t3!. ~6!

Yoshida’s method@4# allows one to systematically con
struct a higher-order integrator from a lower-order one. S
pose that there exists a (2n)th-order symplectic approxima
tion M2n which has the property of time reversibility
M 2n

21(t)5M2n(2t), thenM2n(t) would only contain odd
power terms of timet in its Lie exponent@6#. M2n(t) is then
readily written as

M2n~ t !5exp@ :2tH1t2n11F2n111O~ t2n13!:#.

A (2n12)th-order integrator can be constructed in the f
lowing way:

M2n12~ t !5M2n~x1t !M2n~x0t !M2n~x1t !

5exp@ :2t~2x11x0!H1t2n11~2x1
2n11

1x0
2n11!F2n111O~ t2n13!:#

5exp@ :2tH1O~ t2n13!:#.

The last step is realized if

x012x151, x0
2n1112x1

2n1150.

One set of trivial real solution is

x052
21/(2n11)

2221/(2n11)
, x15

1

2221/(2n11)
. ~7!

The above procedure of Yoshida provides a recipe
constructing higher even order symplectic integrators from
lower-order one. The task of developing higher-order sy
plectic integrators fors-dependent magnetic elements is th
reduced to the development of the lowest even order,
second-order, integrator.

It is worth pointing out that Yoshida’s procedure does n
always produce the most effective higher-order integrato
2-2
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On the other hand, symplectic integration methods have b
actively studied by mathematicians since 1990s as par
geometric integration@12#. Published references on a wid
range of research in this area are documented by
SYNODE project@13#. For example, McLachlan’s work on
designing effective high-order integration methods@14# can
provide valuable insights on developing more efficient in
grators for our problem. In particular, we would like
evaluate a class of more efficient higher-order integra
with positive step size proposed by Nadolski and Las
@15#.

IV. SYMPLECTIC INTEGRATORS WITH PARAXIAL
APPROXIMATION

The development of approximate Lie maps f
z-dependent Hamiltonian of Eq.~4! can be facilitated by ex-
tending the phase space to include (z,pz) as the fourth ca-
nonical pair ands as an independent variable withds5dz
@6#. The equivalent paraxial Hamiltonian in the extend
phase space is given by

K~x,px ,y,py ,d,l ,z,pz ;s!'2d1
~px2ax!

2

2~11d!
1

~py2ay!2

2~11d!

2az1pz . ~8!

Since this Hamiltonian iss independent, an exact Lie ma
for an integration stepDs can be written symbolically as

M~Ds!5exp~2Ds:K: !. ~9!

To simplify our derivation, a gauge transformation is made
yield a simpler vector potential with Az50: AW

5Ax(x,y,z) x̂1Ay(x,y,z) ŷ. Now by splitting the Hamil-
tonian to several parts,

K5K11K21K3

with

K15pz2d, K25
~py2ay!2

2~11d!
, K35

~px2ax!
2

2~11d!
.

A second-order approximation forM is constructed as fol-
lows:

M2~Ds!5expS :2
Ds

2
K1 : DexpS :2

Ds

2
K2 : D

3exp~ :2DsK3 : !expS :2
Ds

2
K2 : D

3expS :2
Ds

2
K1 : D

5M~Ds!1O„~Ds!3
….

Apparently,K1 is exactly solvable due to the separation
the coordinate and momentum belonging to the same can
cal pairs whileK2 and K3 containing (x,px) and (y,py),
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respectively, remain unsolved. However, using the gene
ing function technique, it can be shown thatK2 andK3 are
also exactly solvable.

Let us consider the Lie map exp(:2DsK3:). Noticing that
K3 contains onlypx but not py , a generating function is in
order to transform (px2ax)

2 to (px
new)2 using a set of new

canonical variables. The explicit Lie map for this generati
function is

Ax5expS :2E ax~x,y,z!dx: D ,

expS :2
Ds~px2ax!

2

2~11d!
: D5AxexpS :2

Dspx
2

2~11d!
: DA x

21 .

This generating function Lie map transforms the phase sp
variables explicitly as follows:

Ax$x,y,z,d,l %5$x,y,z,d,l %,

Axpx5px2ax , A x
21px5px1ax ,

Axpy5py2E ]ax

]y
dx, A x

21py5py1E ]ax

]y
dx,

Axpz5pz2E ]ax

]z
dx, A x

21pz5pz1E ]ax

]z
dx.

In addition, the Lie map exp(:2Dspx
2/2(11d):) functions as

a drift:

expS :2
Dspx

2

2~11d!
: D $y,z,d,px ,py ,pz%5$y,z,d,px ,py ,pz%,

expS :2
Dspx

2

2~11d!
: D x5x1

px

11d
Ds,

expS :2
Dspx

2

2~11d!
: D l 5 l 1

px
2

2~11d!2
Ds.

Likewise, the Lie map exp@:2(Ds/2)K2 :# can be exactly
evaluated using a generating function Lie map,Ay
5exp(:2*ay(x,y,z)dy:).

Finally, we have completed the development of an expl
second-order symplectic integrator forM:

M25expS :2
~pz2d!Ds

2
: DAyexpS :2

py
2Ds

4~11d!
: DA y

21

3AxexpS :2
px

2Ds

2~11d!
: DA x

21

3AyexpS :2
py

2Ds

4~11d!
: DA y

21expS :2
~pz2d!Ds

2
: D .

~10!

It is worth pointing out that this type of second-ord
approximations forM is not unique. By choosing differen
magnetic field gauges for the vector potential, one can c
struct an infinite set of second-order Lie map approximatio
2-3
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for the same Hamiltonian. It is expected that a particu
choice of the vector potential can result in a more effici
symplectic integrator.

V. EXTENSION TO EXACT HAMILTONIAN

The development of symplectic integrators for the ex
Hamiltonian of a 3D magnetic field becomes important wh
the paraxial approximation is no longer valid. One such
ample is a dipole magnet with a small bending radius i
compact storage ring. The integrators based upon an e
Hamiltonian can also be used to benchmark those ba
upon approximate Hamiltonians.

The development of explicit integrators in Sec. IV d
pends on the quadratic nature of the Hamiltonian. Con
quently, this technique cannot be directly applied to
square-root form of the exact Hamiltonian@Eq. ~3!#. How-
ever, we recognize that an equivalent exact Hamiltonian
the quadratic form can be constructed using several meth
One of them starts from a quadratic Lagrangian.

The following invariant quadratic Lagrangian in the fou
space@16# describes the charged particle motion in the el
tromagnetic field:

L~xi ,Ui ;t!52
m

2
UiU

i2
q

c
UiA

i , ~11!

where xi5(ct,x,y,z) is the four position vector,Ui

5dxi /dt5(gc,gvW ) is the four-velocity,dt5dt/g is the
proper time,Ai5(f,AW ) is the electromagnetic field four
potential. The Einstein summation rule is used for repea
indices. The conjugate four-momentum is given by

Pi52
]L

]Ui
5mUi1

q

c
Ai ,

and the corresponding Hamiltonian is also quadratic:

H~t!5PiUi1L5

S Pi2
q

c
Ai D S Pi2

q

c
Ai D

2m
. ~12!

Note that the value of the Hamiltonian,H5 1
2 mc2, is invari-

ant under Lorentz transformation. The covariant equation
motion are readily derived from this Hamiltonian:

dxi

dt
5

]H

]Pi
5

Pi2
q

c
Ai

m
,

dPi

dt
52

]H

]xi
5

Pk2
q

c
Ak

m

q

c

]Ak

]xi
.

It is worth pointing out that the space components of a
variant four-vector are equal to the negative 3D vector, e
Pi5(P0 ,2PW ), therefore, we can write the equations of m
tion for the space components, such as thex component and
the time component, using an equivalent HamiltonianK5
2H,
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dx

dt
5

]K

]Px
,

dPx

dt
52

]K

]x
~ i 51!,

d~ct!

dt
5

]K

]~2P0!
,

d~2P0!

dt
52

]K

]~ct!
~ i 50!.

Consequently, the equivalent Hamiltonian can be expres
in terms of conventional time and space quantities,

K~x,Px ,y,Py ,z,Pz ,ct,2P0 ;t!

5

S PW 2
q

c
AW D 2

2S P02
q

c
f D 2

1m2c2

2m
. ~13!

Note that by including the additional term12 mc2 in the above
expression, the resultant Hamiltonian has a zero value. T
particular feature of the Hamiltonian is critical for deriving
form of Hamiltonian using the real timet as an independen
variable.

In the case of a static magnetic field, the scalar potentia
zero and the vector potential is time independent. The t
energy and momentum of the charged particle are cons
i.e., the relativistic parameterg5const. As a result, the in
dependent variable can be switched from the proper timet to
some scaled real times5ct in the following manner:

dt→ds5cgdt,K→K/~cg!.

This yields an equivalent Hamiltonian withs as an indepen-
dent variable:

K~x,Px ,y,Py ,z,Pz ,t̄,Pt̄ ;s!5

S PW 2
q

c
AW D 2

2Pt̄
2
1m2c2

2mcg
,

where t̄5ct and Pt̄52P052E/c52gmc. The next step
is to replacemcg in the denominator by2Pt̄, which is
permissible due to the zero value of the Hamiltonian,

K~x,Px ,y,Py ,z,Pz ,t̄,Pt̄ ;s!

52

S PW 2
q

c
AW D 2

1m2c2

2Pt̄

1
1

2
Pt̄ .

The canonical momenta can be further scaled to yield
following equivalent Hamiltonian:

K~x,px ,y,py ,z,pz ,t̄,pt̄ ;s!

52
~pW 2aW !211/~g0

2b0
2!

2pt̄

1
1

2
pt̄ , ~14!

where aW and pW have been defined in Eq.~3!, pt̄5Pt̄ /P0 ,
b05v0 /c, andg051/A12b0

2 are relativistic parameters a
the nominal energy.

Finally, to express the Hamiltonian in terms of mome
tum deviation and path length, the fourth canonical p
( t̄,pt̄) can be replaced by (d,l ). Using the relationship be
2-4



b

h
uc
a
ht

e
or
g
o
a

o

an
ha
ici
m

tic
re
ay
g

el
,

ua
ld
er
ol

e
a
m
nt
he
n
d
u
r

a
d
gn
l-
gl

nd-
by

gi-

D

t

is

to
,

e
Fig.
er-
m

se

the

e

f
rd
ri-

m-

d
ed
he
O

rst

final
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tweend andpt̄ , pt̄52A(11d)211/(g0
2b0

2), a Hamiltonian
depending on momentum deviation and path length can
derived:

K~x,px ,y,py ,z,pz ,d,l ;s!5
~pW 2aW !22~11d!2

2A~11d!21
1

g0
2b0

2

.

~15!

With this quadratic form of the exact Hamiltonian, the tec
nique outlined in Sec. IV can be readily applied to constr
explicit symplectic integrators. It is important to note th
this type of integrator uses the time integration in eig
dimensional~8D! phase space.

Finally, we would like to address the relationship betwe
the time integration and space integration. In accelerat
magnetic devices and beam diagnostics are located alon
beam direction. Likewise, many beam parameters are
served and measured along the beam line at a certain
muthal positions. Therefore, it is convenient and logical t
use s as the independent variable in the Hamiltonian@Eq.
~3!#. Consequently, symplectic maps can be computed
symplectic tracking can be performed from one azimut
location to another. However, to our knowledge no expl
integration method has been developed for the exact Ha
tonian with the square root using the space integration.

Using an alternative exact Hamiltonian for 3D magne
fields, we have developed explicit integrators in 8D by
sorting to the time integration. Direct time integration m
be useful for a small circular accelerator in which the ma
netic field is known globally. As an example, we have dev
oped a FODO lattice consisting of a focusing quadrupole
drift, a defocusing quadrupole, and another drift. Both q
drupoles in this FODO lattice possess extended fringe fie
The global magnetic field in the FODO lattice is the sup
position of two quadrupole fields. Each of the quadrup
fields is represented by the following vector potential:

aW 5„0,0,2 1
2 b~z!~x22y2!…, b~z!5

b1

A2p
expS 2

z2

2l q
2D ,

~16!

where b1 and l q are the focusing strength and effectiv
length of the quadrupole, respectively. The fact th
¹W 3(¹W 3aW )Þ0 does not change the nature of the proble
for it is equivalent to having an artificially introduced curre
source in the lattice. This additional term which allows t
soft-edge modeling of the magnet is in fact physically a
mathematically more correct than the hard-edge mo
which precludes going back to the original Hamiltonian. N
merically, we have confirmed that the second-order integ
tor for such a vector potential field is symplectic.

Knowing the exact global field for a storage ring with
large number of elements is practically impossible. In ad
tion, the time-dependent tracking data are difficult to ali
for a particulars location for further analyses. These difficu
ties can be resolved by sticking to the space integration
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bally while providing a phase space conversion at the bou
aries of those elements which need to be modeled
symplectic time integration. Such a conversion is topolo
cally permissible if it occurs in the field-free region.

This idea is illustrated in Fig. 1. Suppose that the 3
magnetic field can be practically confined betweenz1 andz2.
To integrate fromz0 to z3, the time integration can be firs
performed fromz0 to a z location slightly beyondz2. In the
field-free region betweenz2 and z3, the particle drifts for-
ward toz3 using the following Hamiltonian:

Kd~x,px ,y,py ,z,pz ,d,l ;s!52A~11d!22px
22py

21pz .

Mathematically, the following canonical transformation
performed:

Dpx5Dpy5Dpz5Dd50, Ds5Dz,

Dx5
px

u
Ds, Dy5

py

u
Ds, D l 5

11d

u
Ds,

whereu5A(11d)22px
22py

2, andDz is the drift length. As
a result of this practice, the local time integration is used
create a symplectic map between two locations in spacez0
andz3.

This localized time integration is tested with the sam
FODO lattice described above. The results are shown in
2. The symplectic condition of the tracking code is det
mined by the numerical behavior of the total momentu
change in the drift space:dp5(11d)2Apx

22py
22pz

2. The
calculation shown in Fig. 2 is performed in the 8D pha
space, always carrying the value ofpz during the tracking.
We have found thatdp would show no particular long-term
trend of increasing or decreasing, therefore symplectic, if
following two conditions are met:~1! if the time integration
is extended far enough from the quadrupole center~larger
than 68l q); ~2! if the number of integration steps is larg
enough (>50 steps!. In this case,dp is small, of the order of
10213, and the change ofpz is also small in the last steps o
integration. By meeting these conditions, the drift-forwa
operation is carried out in the field-free region in the nume
cal sense. Becausepz is frozen in the field-free region, the
8D symplectic dynamics is then reduced back to the 6D sy
plectic dynamics.

It is important to point out that when both horizontal an
vertical motions are excited, particle’s motion is coupl
nonlinearly. Such nonlinear coupling is not present in t
paraxial Hamiltonian. The nonlinear coupling in this FOD

FIG. 1. Two steps are involved in symplectic integration fromz0

to z3. Using the time integration for the exact Hamiltonian, the fi
step takes the particle fromz0 to az location slightly passingz2. In
the field-free region, the second step takes the particle to the
position ofz3 using a canonical transformation.
2-5
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lattice is shown as finite thickness of the phase space elli
and fast motion around the turning point in Fig. 2.

Clearly, the time integration for the exact Hamiltonia
requires the development of proper 3D field models boun
by field-free regions. This remains a challenge for seve
reasons. First, the 3D field model should be analytic in
entire integration region. Second, to facilitate the convers
between the time and space integrations, the model sh
provide rapid tapering at the ends of the magnet. Third
there is significant fringe field overlap from two adjace
magnets, they have to be treated as one magnetic devic

VI. A GENERAL WIGGLER INTEGRATOR
FOR BEAM DYNAMICS STUDIES

To illustrate the usage of explicit symplectic integrato
for 3D magnetic fields, we have developed a general s
plectic tracking code for wigglers using the paraxial Ham
tonian of Eq.~4!. The three-dimensional magnetic field for
horizontal planar wiggler can be described in the followi
form:

By

B0
52(

m,n
Cmncos~kxlx!cosh~kymy!cos~kznz1un!,

Bx

B0
5(

m,n

Cmnkxl

kym
sin~kxlx!sinh~kymy!cos~kznz1un!,

Bz

B0
5(

m,n

Cmnkzn

kym
cos~kxlx!sinh~kymy!sin~kznz1un!,

whereB0 is the amplitude of the peak magnetic field,Cmn

are the relative amplitudes of wiggler harmonics,kym
2 5kxl

2

1kzn
2 , kzn5nkw , kw52p/lw , lw is the wiggler period, and

un is the relative phase of thenth wiggler harmonic. The

FIG. 2. A particle’s phase space trajectories plotted at the en
a FODO lattice~QF for the focusing quadrupole and QD for th
defocusing quadrupole!. QF-DRIFT1-QD-DRIFT2~100 000 turns!.
Quadrupole parameters are (b1)QF56 m22, (b1)QD525 m22, l q

50.1 m, and the fringe field extends to61.0 m. The length of both
drifts is l d50.5 m. Initially, the particle starts with (x,px ,y,py ,d)
5(0.01,0,0.01,0,0).
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wiggler harmonic expansion of the magnetic field allows t
modeling of realistic wiggler fields. For example, a next li
ear collider~NLC! damping ring wiggler with saturated pol
tips can be modeled with a few tens of wiggler harmonics
achieve 1023 or better relative field accuracy@17#.

Before this work, explicit symplectic integrators based
a simple average Hamiltonian method of Smith@18# or simi-
lar techniques had been used for wiggler tracking@17,19–
21#. By retaining the most important nonlinear term in th
system, this method is rather efficient. However, the ac
racy of the tracking results needs to be verified with a dir
wiggler integrator described in the following.

By choosingAz50, a more efficient integrator is obtaine
with the vector potential:AW 5(Ax ,Ay ,0). Thescaled vector
potentialaW 5qAW /P0c is given by

ax5(
m,n

Dmncos~kxlx!cosh~kymy!sin~kznz1un!,

ay5(
m,n

Dmn

kxl

kym
sin~kxlx!sinh~kymy!sin~kznz1un!,

az50, ~17!

where q52ueu for electrons, Dmn5Cmn(K/g0b0)
3(kw /kzn) , K5eB0 /mc2kw is the wiggler parameter, and
g0 , b0 are the relativistic parameters at the nominal ener
For vertical planar wigglers, similar harmonic expressio
for fields can be obtained by changingx to y andy to 2x in
the above expressions@22#.

The magnetic field for an arbitrarily polarized wiggler ca
be expressed as a superposition of a horizontal wiggler
vertical wiggler field. This allows us to develop a gene
wiggler tracking code using wiggler harmonics. This trac
ing code has been implemented in several tracking co
including TRACY @23# andAT @24#.

Symplectic wiggler tracking has been used to study Du
FEL storage ring beam dynamics. The Duke FEL stora
ring is a dedicated FEL light source with a small emittan
(ex518 nm rad at 1 GeV!. Like third-generation light
sources with a small emittance, the ring performance is c
cally dependent on the dynamic aperture@20,21#. Unlike
many conventional light source rings, the Duke ring is d
signed with long straight sections to maximize space for F
wigglers. Accurate dynamics studies with long FEL wiggle
become possible with the above generic wiggler track
code. Our studies also use the frequency map analysis t
nique of Laskar@25–27# to gain in-depth understandin
about the particle’s loss mechanism.

In the Duke ring, the present FEL consists of two elect
magnetic OK4 wigglers, each 3.4 m long separated b
three-pole buncher magnet~see Table I!. The main field of
the OK4 wigglers can be described by the fundamental h
monic with its By component as By5
2B0cosh(kwy)cos(kwz). The wiggler tracking is somewha
optimized for efficiency by using a second-order integra
and five integration steps per wiggler period.

The significance of dynamics impact of the OK4 wiggle
is illustrated by the change in dynamic aperture after
wigglers are turned on. Figure 3 shows the on-moment

of
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dynamic aperture of the Duke ring with OK4 wigglers turn
off. A number of excited resonances are identified and
beled in both the configuration plot and tune plot. In thex
direction, the dynamic aperture is limited by the sixth-ord
resonance~i! with 6nx555. The horizontal loss region i
connected to the high diffusion region at some vertical a
plitudes as a result of two-resonance overlap:~d! with 2nx

14ny535 and~e! with 7nx564. In they direction, the loss
region around the resonance~g! with 3nx14ny544 provides
a practical limitation for the vertical aperture. Beyond it, t
typical third-order sextupole resonance~h! with nx22ny

51 is excited, forming a triangular island. It is interesting
observe that at even higher vertical amplitude there exis
stable region which corresponds to a cross point in the t
space at (nx ,ny)5(9.25,4.125). However, the stable regio
beyond the resonance~g! is washed out when various lattic
errors are taken into account.

Figure 4 shows the dynamic aperture with OK4 wiggle
turned on. Compared with the wiggler-off case, the m
apparent difference is the tune space footprint. The horiz
tal tune spread is roughly the same~from 9.11 to 9.20).
However, while decreasing from 4.186 to 4.12 with wiggle
off, the vertical tune spread with amplitude increases fr
4.186 to 4.22 with wigglers on. This is the result of th
strong nonlinear wiggler focusing. Because of a differe
tune spread footprint, different parts of the tune space
being sampled by particles when wigglers are turned
which in turn excites different resonances. For example, b
figures show a four-resonance crossing at about the s
horizontal amplitude of 10 mm, but with different vertic
amplitudes. Like the case with the wiggler off, the horizon
aperture is limited by the same sixth-order resonance. In
vertical direction, the situation is rather different. With th
wiggler on, the vertical aperture is not limited by any res
nances. Instead, it shows an almost sudden transition from
intermediate level of diffusion to a complete particle los
This effect can be attributed to the exponential increase
the wiggler field near the vertical pole tips as expressed
the hyperbolic functions. In such a case, the wiggler fi
acts like a kind of hard limit for the vertical aperture. As
result, the vertical aperture is somewhat reduced to 13.6 m

We have also studied the dynamics impact of circula
polarized FEL wigglers in the Duke ring. In particular, th
off-momentum dynamic aperture has been computed

TABLE I. The OK-4 wiggler parameters.

OK-4 FEL

Total wiggler length~m! 6.7
Number of wigglers 2
Number of periods per wiggler 33.5
Wiggler periods~cm! 10
Wiggler gap~mm! 22
Peak magnetic field~kG! 5.5

Max. wigglerK5
eB0

kwmec
2

5.1
04650
-

r

-

a
e

t
n-

t
re
n,
th

e

l
e

-
an
.
of
in
d

m.
y

to

determine the available dynamic momentum aperture
various wiggler and storage ring operation conditions@28#.

VII. CONCLUDING REMARKS

Although Ruth first speculated in 1980s@1# that an ex-
plicit high-order map might be possible for a Hamiltonian
the form H5@pW 2aW (qW ,t)#2/2, the exact procedure to con
struct such a high-order symplectic integrator was not de
oped until this work. Furthermore, we have successfully
veloped a quadratic Hamiltonian for the exact partic

FIG. 3. ~Color online! On-momentum dynamic aperture of Duk
storage ring at the center of the arc withbx52.48 m, by

51.57 m. The OK4 wigglers are turned off, the nominal energy
1 GeV, and the number of tracking turns is 1000. The shaded a
in plots indicate different diffusion rates. Unplotted white spaces
regions where particles are lost during tracking.~For colored online
figures, the diffusion rate per turn is computed in a logarithm
scale and then mapped to a color map: blue areas indicate
diffusion regions, red areas indicated high diffusion region!. Various
excited resonance lines@from ~a! to ~h!# are identified and labeled in
the frequency map plot~the lower plot! and in the configuration
space plot~the upper plot!.
2-7
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motion in the static 3D magnetic field. Via the time integr
tion, this Hamiltonian has allowed the development of e
plicit symplectic integrators for any 3D magnetic elements
accelerators without paraxial approximation.

Explicit symplectic integrators fors-dependent magneti
fields are essential for understanding single-particle be

FIG. 4. ~Color online! On-momentum dynamic aperture of Duk
storage ring at the center of the arc withbx52.48 m, by

51.57 m. The OK4 wigglers are turned on with a wigglerK
55.1, the nominal energy is 1 GeV, and the number of track
turns is 1000. The description of the shaded area~color map! is the
same as for the previous figure.
t o

04650
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m

dynamics in the next generation storage rings, from lig
source rings to linear collider damping rings to the Neutri
Factory and Muon Collider. Two types of applications a
particularly important. The first type is the modeling of th
magnet fringe field. For example, superconducting dipo
and wavelength shifters are increasingly becoming a p
ferred radiation source for hard x rays in some thir
generation light source rings. Thes-dependent magnetic field
in such devices can be properly modeled using an exp
symplectic integrator described in this paper.

The second type of application is the modeling of ma
netic undulators and wigglers with linear, circular, or arb
trary polarizations. Before this work, explicit symplectic in
tegrators had resorted to the average Hamiltonian~Sec. VI!.
In addition, implicit methods based upon generation fun
tions, both analytical and numerical, had been develo
@29–31#. While very useful, these methods have vario
limitations and their accuracy needs to be benchmarked w
the direct symplectic wiggler integration method presented
this paper. This method allows direct trajectory tracking
wigglers in the same way as for magnetic multipoles. T
usefulness of this technique has been demonstrated by
study of the Duke storage ring dynamics with the OK4 FE
wigglers ~Sec. VI!.

Finally, we would like to comment on the time integratio
for exact Hamiltonian and its use in existing 6D trackin
codes. First, it remains a challenge to model the 3D magn
field using an analytic representation with a rapid taperi
Second, as demonstrated in the FODO lattice example~Sec.
V!, reducing 8D symplectic dynamics to the 6D symplec
dynamics can be done in the field-free region. Howeve
careful study has yet to be performed to determine if
variable pz need be carried around for the part of tracki
performed in 6D tracking codes.
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